Physics Reference Tables

Physical Constant	Symbol	Value
Acceleration due to gravity on Earth	g	9.8 m/s/s
Coulomb's law constant	k	$9.0 imes10^{9}rac{ m Nm^{2}}{ m C^{2}}$
Elementary charge	е	$1.6 imes 10^{-19} \ \mathrm{C}$
Electron rest mass	$m_{_e}$	$9.11 imes10^{-31}~{ m kg}$
Gravitational constant	G	$6.67 imes10^{-11}rac{ m Nm^2}{ m kg^2}$
Proton rest mass	$m_{_p}$	$1.67~ imes~10^{-27}~ m kg$
Speed of light in a vacuum	С	$3.00~ imes~10^8~{ m m/s}$
Speed of sound in air at STP		331 m/s

The Index of Refraction for Common Substances		
Air	1.00	
Alcohol	1.36	
Corn Oil	1.47	
Diamond	2.42	
Glass, Crown	1.52	
Glass, Flint	1.61	
Glycerol	1.47	
Quartz, Fused	1.46	
Water	1.33	

Mechanics

$\overline{v} = \frac{\Delta x}{\Delta t}$	<i>v</i> =
$\mathbf{x}_f = \mathbf{x}_i + vt$	t =
	x =

$$\mathbf{x}_f = \mathbf{x}_i + v_i t + \frac{1}{2} a t^2$$

$$a = \frac{\Delta v}{\Delta t}$$

 $v_f^2 = v_i^2 + 2a\Delta \mathbf{x}$

$$F = ma$$

$$F_g = mg$$

 $F = \frac{Gm_1m_2}{d^2}$

 $F\Delta t = \Delta p = m\Delta v$

$$a_c = \frac{v^2}{r}$$

$$F_c = \frac{mv^2}{r}$$

	$W = E \Lambda_{T}$	
v = velocity	$W = F \Delta X$	W = work
t = time	$P - W - F\overline{w}$	F = force
x - position	$I = \frac{1}{\Delta t} = I U$	$\mathbf{x} = \mathbf{position}$
		P = power
a = uniform acceleration	$PE_g = mgh$	t = time
F = force	$K\!E=rac{1}{2}mv^2$	v = velocity
m = mass	_	PE_g = gravitational
$F_g = \text{weight}$	$F = -k\mathbf{x}$	potential energy
g = acceleration due to	$PE_s = \frac{1}{2}kx^2$	m = mass
gravity on Earth	° Д	h = height
G = gravitational constant		$K\!E$ = kinetic energy
d – distance between		k = spring constant
centers of mass		PE_s = potential energy
p = momentum		stored in a spring
a_c = centripetal		
acceleration		

Energy

 F_c = centripetal force

r = radius

Electricity

$F=rac{kq_1q_2}{d^2}$	F = force	Series Circuits
V = IR	k = Coulomb's law constant	$I_t=I_1=I_2=I_3=\ldots$
$P = VI = I^2 R = \frac{V^2}{R}$	q = charge	$V_t = V_1 + V_2 + V_3 + \dots$
	d = distance between centers	$\boldsymbol{R}_{eq} = \boldsymbol{R}_1 + \boldsymbol{R}_2 + \boldsymbol{R}_3 + \dots$
	V = electrical potential difference	
	I = current	Parallel Circuits
	R = resistance	$I_t = I_1 + I_2 + I_3 + \dots$
	P = power	$V_t = V_1 = V_2 = V_3 = \dots$
		$rac{1}{R}_{eq} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} +$

Mathematical Formulas

Circumference of a circle = $2\pi r$

b

a

Area of a rectangle = length × width Area of a triangle = $\frac{1}{2}$ base × height

Ð

